FUNDAMENTOS DE PROGRAMACION Y METODOS NUMERICOS Segundo Parcial - 2C2025

PRIMERA PARTE DEL EXAMEN (sin computadora).

Tendrá 2hs

Realizar por escrito el Análisis y diseño de la situación problemática. En caso de que las decisiones se deban tomar en base a un análisis gráfico puede realizarlo a mano alzada o puede explicitar para qué hacer el gráfico y qué busca observar y qué hacer en cada situación.

Al finalizar <u>subirá a la plataforma una imagen de lo escrito</u>, la cual debe estar firmada por el estudiante.

SEGUNDA PARTE DEL EXAMEN (con computadora)

Tendrá 1hs.

Realizar la implementación en Phyton de la solución planteada en la 1er parte. Deberá entregar 2 archivos:

- Un .pdf con el código, una imagen de la ejecución con los resultados obtenidos y los resultados contextualizados
- Un .py con el código

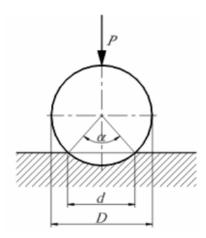
ACLARACIÓN: Si la situación problemática tiene datos que vienen dados en una tabla, considerar que esos datos están almacenados en un archivo y deben ser leídos desde el mismo. Los valores/resultados a mostrar/informar al usuario deben ser almacenados en un archivo.

CÓMO SE ESPERA QUE RESUELVA LA PROBLEMÁTICA

Pensar con tranquilidad, hacer todas las etapas de resolución de problemas vistos durante la cursada:

- 1. ANÁLISIS del problema y ESTRATEGIA de resolución:
 - a) objetivo,
 - b) datos de entrada, datos de salida y
- c) descripción detallada del proceso que debe ejecutarse para obtener los datos de salida a partir de los datos de entrada. Esto debe incluir:
 - Tipo/s de problemática/s a las que se reduce la situación a resolver.
 - Expresión/es matemática/s y/o valores que utiliza el método
 - Análisis gráfico (si es que se requiere)
 - Elección del método numérico y justificación de la elección del mismo
 - 2. DISEÑO de la solución.
 - a) Un único Diagrama de Estructura (DE).
 - b) Algoritmos: algoritmo de todos los módulos del DE.
 - 3. CODIFICACIÓN (Código Python y prueba de ejecución del mismo)
 - 4. RESULTADOS (Expresar el resultado de manera contextualizada e indicar como valida los mismos)

RECOMENDACIONES Y ACLARACIONES:


- En caso de no poder hacer algo debe entregar un archivo indicando con palabras "entrega en blanco";
- Sólo se corregirá lo que es legible y claro.
- En caso de copia se desaprueban todos los involucrados, ya que la actividad es de carácter individual

FUNDAMENTOS DE PROGRAMACION Y METODOS NUMERICOS Segundo Parcial - 2C2025

Estimación de la relación entre las variables

El ensayo de dureza Brinell consiste en presionar la superficie del material a ensayar con una bolita de acero muy duro o carburo de tungsteno, produciendo la impresión de un casquete esférico correspondiente a la porción de la esfera que penetra. Un esquema básico de un ensayo de dureza Brinell es el siguiente.

El valor de la dureza Brinell se calcula a partir de la carga aplicada P, del diámetro de la bolita D y del diámetro d de la huella en la superficie.

En la producción de herramientas, el método para deformar el acero a temperatura normal mantiene una relación con la dureza del mismo ya que a medida que la deformación crece, se ve afectada la dureza del acero. Se busca investigar en qué medida un modelo exponencial o polinomial de orden 2 explican la relación que vincula la dureza con la deformación y para ello se ha tomado la siguiente muestra:

Deformación (mm)	6	9	11	13	22	26	28	33	35
Dureza Brinell (kg/mm²)	68	67	65	53	44	40	37	34	32

Pero además, se desea saber la dureza que tiene el acero cuando la deformación es de 17mm.