

Sistemas de ecuaciones lineales compatibles

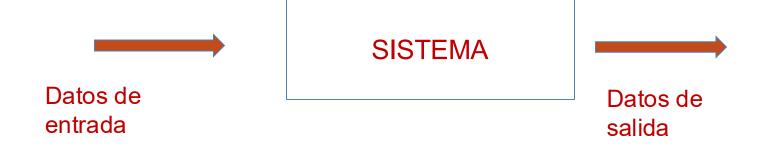
Recordemos...

Fases en la **resolución de un problema**

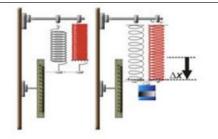
Definición del problema
 Análisis de Requerimientos:
 Análisis del problema
 Qué es lo que hay que hacer?
 Diseño:
 Prueba del algoritmo
 Cómo hacer lo especificado en la etapa de Análisis?
 Codificación del algoritmo en un lenguaje
 Programa
 Programa
 DE

 Algoritmo

 Programa
 Documentación del programa



Definición del problema



Se quiere caracterizar un sistema de una masa con dos resortes. Las fuerzas [N] actuantes se miden con un dinamómetro de 4 cifras significativas de precisión. Los desplazamientos [mm] se midieron con una regla común. El sistema de ecuaciones queda determinado por:

Análisis del problema

- Objetivo, los resultados y valores que se debe obtener.
- Reconocer los datos y valores de los que dispone.
- Análisis gráfico.
- Descripción general con tus palabras de como se resuelve.

Análisis del problema

Objetivo: caracterizar el sistema masa resorte hallando los valores de k₀ y k₁.

Análisis del problema

Los datos y valores de los que dispone:

Analizamos de qué tipo es este sistema?

- es lineal? (La forma es lineal, lo comprobamos gráficamente)
- tiene solución? (Teorema Rouché-Frobenius)

Análisis del problema

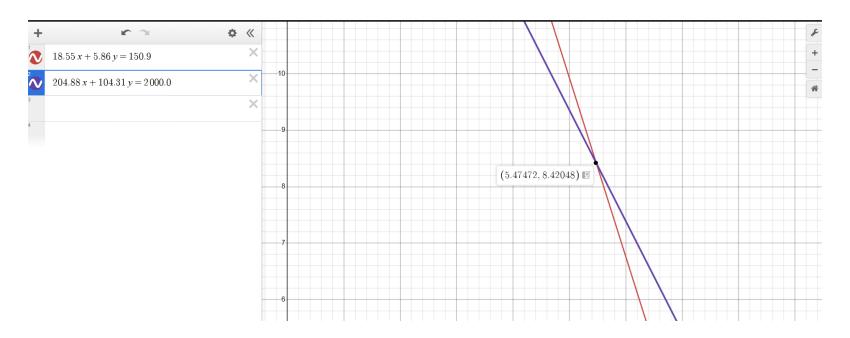
Teorema Rouché-Frobenius:

Menciona que si el rango de la matriz de coeficientes (Mc) = rango de la matriz ampliada (Ma) = numero de incógnitas (Ni), entonces el sistema es compatible determinado, es decir existe una única solución, que gráficamente significa que existe un punto en el que se cruzan las rectas.

$$M_c = M_a = N_i$$
$$2 = 2 = 2$$

Análisis del problema

Análisis gráfico



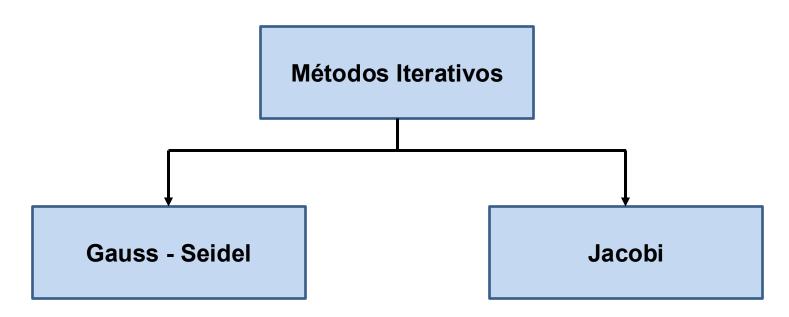
Análisis del problema

Descripción general con tus palabras de como se resuelve.

Resolver el sistema de ecuaciones lineales compatible determinado aplicando un método numérico (Gauss Seidel o Jacobi) para poder obtener los valores de k₀ y k₁ que satisfacen cada una de las ecuaciones del sistema y que gráficamente implica determinar el punto de (k_0, k_1) donde se intersecan ambas curvas.

Análisis del problema

Métodos Iterativos para resolver grandes Sistemas de ecuaciones lineales Compatibles



Los métodos Gauss-Seidel y Jacobi garantizan convergencia si la matriz es diagonal dominante.

Análisis del problema

Jacobi

Cicla encontrando en cada iteración una solución aproximada a la solución del sistema (para esto usa en cada iteración todos los valores de las incógnitas calculados en la anterior iteración) hasta que se converja y obtener una solución aproximada a la verdadera que cumpla con la tolerancia de error previamente especificada.

Gauss - Seidel

Gauss-Seidel a diferencia de Jacobi usa los valores de las incógnitas más recientemente obtenidos para calcular los de la iteración actual.

$$A * k = c$$

En forma matricial para un sistema de dos ecuaciones con dos incógnitas:

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} * \begin{bmatrix} k_0 \\ k_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$

A = matriz coeficientes

k = arreglo incógnitas

C = arreglo constantes

Problema: Sistema masa-resorte Análisis del problema

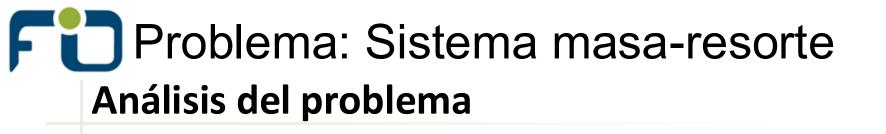
$$A * k = c$$

En forma matricial para un sistema de 2 ecuaciones por 2 incógnitas:

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} * \begin{bmatrix} k_0 \\ k_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$

A = Matriz Coeficientes; k = Arreglo Incógnitas; C = Arreglo constantes

$$\begin{bmatrix} 18.55 & 5.86 \\ 204.88 & 104.31 \end{bmatrix} * \begin{bmatrix} k_0 \\ k_1 \end{bmatrix} = \begin{bmatrix} 150.9 \\ 2000.0 \end{bmatrix}$$



CONSIDERAR QUE:

Los sistemas de ecuaciones tienden a estar mal condicionados.

Los sistemas mal condicionados son sensibles a los errores de redondeo.

Para reducir los errores de redondeo escalamos el sistema o su representación matricial.

Dividir por el máximo de la fila (escalar fila):

$$\begin{bmatrix} 18.55/\mathbf{18.55} & 5.86/\mathbf{18.55} \\ 204.88/\mathbf{204.88} & 104.31/\mathbf{204.88} \end{bmatrix} * \begin{bmatrix} k_0 \\ k_1 \end{bmatrix}$$

$$= \begin{bmatrix} 150.9/18.55 \\ 2000.0/204.88 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0.3159 \\ 1 & 0.5091 \end{bmatrix} * \begin{bmatrix} k_0 \\ k_1 \end{bmatrix} = \begin{bmatrix} 8.1347 \\ 9.7618 \end{bmatrix}$$

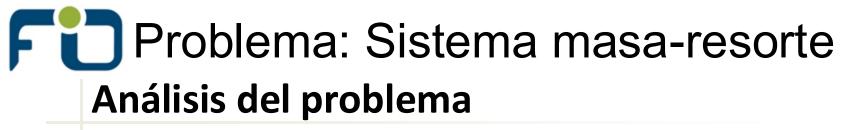
Análisis del problema

- ¿Cuáles son las ecuaciones iterativas para calcular en cada iteración los nuevos valores de las incógnitas?
- ¿Es posible aplicar el método numérico?
- ¿Es posible garantizar convergencia?
- ¿Hasta cuando se itera al aplicar cualquiera de los dos métodos numéricos?
- ¿Qué valores iniciales de las incógnitas consideramos?

Problema: Sistema masa-resorte Análisis del problema

¿Cuáles son las ecuaciones iterativas?

Las ecuaciones iterativas surgen de despejar cada incógnita de alguna de las ecuaciones del sistema.



¿Es posible aplicar el método numérico?

Condiciones de aplicabilidad: Es posible despejar una incógnita desde cada ecuación o fila de matriz, por ello la matriz no debe tener cero en la diagonal.

Para ello, pivoteamos las filas de la matriz.

¿Es posible garantizar convergencia?

Condiciones de convergencia: La matriz debe ser diagonal dominante para asegurar que el método converge. Sino puede o no converger.

Diagonal dominante = el valor del elemento de la diagonal (pivote) debe ser mayor en valor absoluto que la suma en valor absoluto de todos los elemento de su fila.

$$\begin{bmatrix} 1 & 0.3159 \\ 1 & 0.5091 \end{bmatrix} * \begin{bmatrix} k_0 \\ k_1 \end{bmatrix} = \begin{bmatrix} 8.1347 \\ 9.7618 \end{bmatrix}$$

Aunque pivoteamos no podemos llegar a una matriz diagonal dominante. Entonces no se puede garantizar convergencia.

En estos casos probamos si converge despejando de una forma y sino despejamos de otra forma y volvemos a probar si converge.

Análisis del problema

¿Hasta cuando se itera?

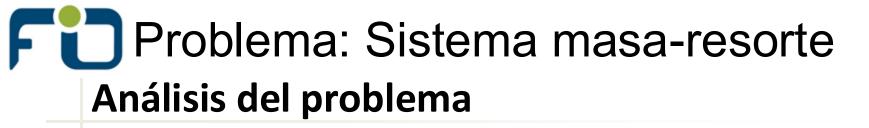
$$\varepsilon_{a,i} = \frac{\left\|\mathbf{x}^{(i)} - \mathbf{x}^{(i-1)}\right\|}{\left\|\mathbf{x}^{(i)}\right\|} 100\% < \varepsilon_{s}$$

i: iteración actual.

i-1: iteración anterior.

 $\|\mathbf{x}^{(i)}\|$: norma 2 o Euclidea del vector x en iteración actual i.

 $\|\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)}\|$: norma 2 o Euclidea de la diferencia entre los vectores aproximados en las iteraciones actual y anterior.



Cota de error

Cifras significativas: El enunciado especifica que se requieren 4 cifras significativas, por lo tanto:

$$\varepsilon_{s=0,5} x 10^{2-4} = 0.5 x 10^{-2}$$

$$\varepsilon_{s=0.005}$$

Problema: Sistema masa-resorte Análisis del problema

¿Qué valores iniciales de las incógnitas consideramos?

Si es posible, observamos gráficamente valores cercanos a los buscados. Por defecto, se parte de cero como valor inicial para todas las incógnitas, entonces $k_0=0$ y $k_1=0$.

Análisis del problema

Datos del sistema de ecuaciones Datos de entrada?

Error esperado

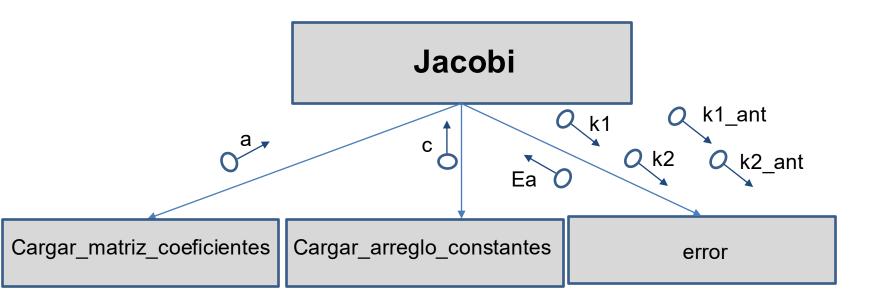
Datos de salida? Variables incógnitas

Iteraciones

Error

Método JACOBI o Gauss Seidel Proceso?

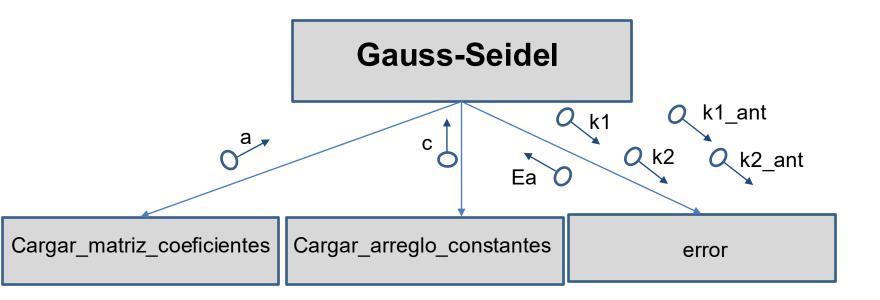
Diagrama de Estructuras – Jacobi



Algoritmo - Jacobi

```
a = Cargar_matriz _coeficientes
c = Cargar arreglo constantes
k = [0,0] #inicializar arreglo de incognitas en cero
Leer es #leer cota de error
ea=es + 1
i = 1
Mientras Es<= Ea
  k1 = (c[0] - a[0][1] * k[1])/a[0][0]
  k2 = (c[1] - a[1][0] * k[0])/a[1][1]
 i+=1
 Si i>=2
    Ea = Error(k, k1, k2)
  k[0]=k1
  k[1]=k2
Imprimir k1, k2, i, Ea
```


Diagrama de Estructuras – Gauss Seidel



Notar que el DE son iguales entre Jacobi y Gauss-Seidel

Algoritmo - Gauss Seidel

```
a = Cargar_matriz _coeficientes
c = Cargar arreglo constantes
k = [0,0] #inicializar arreglo de incognitas en cero
Leer es #leer cota de error
ea=es + 1
i = 1
Mientras Es<= Ea
 k1= ( c[0] – a[0][1] * k[1] )/a[0][0] | Modificación!
 k2 = (c[1] - a[1][0] * k1)/a[1][1]
  i+=1
 Si i>=2
    Ea = Error(k, k1, k2)
 k[0]=k1
 k[1]=k2
Imprimir k1, k2, i, Ea
```

Función Cargar Matriz Coeficientes

Función Cargar Arreglo Constantes

```
13
      def cargar_arreglo_constantes():
14
          c = [0, 0]
15
16
          for i in range(len(c)):
              c[i] = float(input('Ingrese la constante c' + str(i+1)))
17
          \#c[0] = 8.1347
18
19
          \#c[1] = 9.7618
          return c
20
21
```



```
def error(k1, k1_ant, k2, k2_ant):
| return m.sqrt(m.pow(k1-k1_ant,2) + m.pow(k2-k2_ant,2)) / m.sqrt(m.pow(k1,2)+m.pow(k2,2))*100
```

Principal: Jacobi

```
25
     a = cargar_matriz_coeficientes()
     print('Matriz coeficientes: ')
26
27
     print(a)
     c = cargar_arreglo_constantes()
29
     print('Arreglo constantes: ')
     print(c)
30
     k = [0, 0]
31
32
     # Error
     es = float(input('Ingrese el error: '))
33
     i = 1
35
     ea=es+1
     while (es <= ea):
36
          k1 = (c[0]-a[0][1]* k[1])/a[0][0]
37
          k2 = (c[1]-a[1][0]*k[0])/a[1][1]
          i+=1
         if (i >= 2):
41
              ea = error(k1,k[0],k2,k[1])
42
          k[0]=k1
43
          k[1]=k2
     print ('Contante k1: ' + str(k1))
45
     print ('Contante k2: ' + str(k2))
47
     print ('Iteraciones: ' + str(i))
      print('Error: ' + str(ea))
```

Principal: Gauss-Seidel

```
25
      a = cargar_matriz_coeficientes()
      print('Matriz coeficientes: ')
     print(a)
27
     c = cargar_arreglo_constantes()
      print('Arreglo constantes: ')
29
     print(c)
     k = [0, 0]
31
32
     # Error
     es = float(input('Ingrese el error: '))
33
     i = 1
35
     ea=es + 1
     while (es <= ea):
36
37
          k1 = (c[0]-a[0][1]* k[1])/a[0][0]
          k2 = (c[1]-a[1][0]*k1)/a[1][1]
          i+=1
          if (i >= 2):
              ea = error(k1, k[0], k2, k[1])
41
42
          k[0]=k1
43
          k[1]=k2
44
      print ('Contante k1: ' + str(k1))
45
      print ('Contante k2: ' + str(k2))
      print ('Iteraciones: ' + str(i))
47
      print('Error: ' + str(ea))
```


Resultados

Para finalizar, recordar mostrar los resultados en forma contextualizada de acuerdo a la definición y análisis del problema.

Se ejecuto en base a un error: 0.001

Jacobi	Gauss-Seidel
Contante k1: 5.474240907060613	Contante k1: 5.474246653868315
Contante k2: 8.42184669272541	Contante k2: 8.421829397233715
Iteraciones: 64	Iteraciones: 29
Error : 7.796012015625046e-05	Error : 9.05477967818214e-05

$$18.55k_0 + 5.86k_1 = 150.9$$

 $204.88k_0 + 104.31k_1 = 2000.0$

Evaluación

Jacobi	Gauss-Seidel
Contante k1: 5.474240907060613	Contante k1: 5.474246653868315
Contante k2: 8.42184669272541	Contante k2: 8.421829397233715
Iteraciones: 64	Iteraciones: 29
Error : 7.796012015625046e-05	Error : 9.05477967818214e-05

$$18.55k_0 + 5.86k_1 = 150.9$$

 $204.88k_0 + 104.31k_1 = 2000.0$

$$18.55*5.474 + 5.86*8.421 = 150.894$$

 $204.88*5.474 + 104.31*8.421 = 1999.999$