

PROBLEMA PROPUESTO

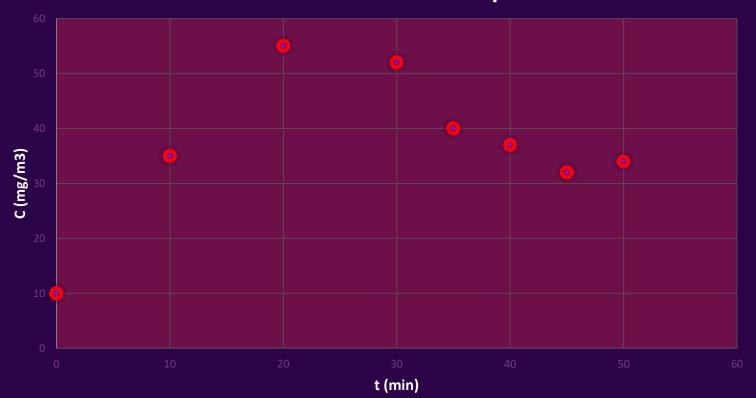
La integración proporciona un medio para calcular cuánta masa entra o sale de un reactor durante un periodo específico de tiempo, así:

 $\mathbf{M} = \int_{t_i}^{t_f} \mathbf{Q}. \, \mathbf{C}. \, dt$

donde t_i y t_f : tiempo inicial y final, respectivamente. La integral representa la suma del producto del flujo por la concentración, lo que da la masa total que entra o sale de t_i a t_f . La tasa de flujo Q se puede considerar constante, $Q=4\,m^3/min$. Calcular la Masa total entre 0 y 50 min.

t (min)	0	10	20	30	35	40	45	50
C, mg/m3	10	35	55	52	40	37	32	34

Concentración vs tiempo

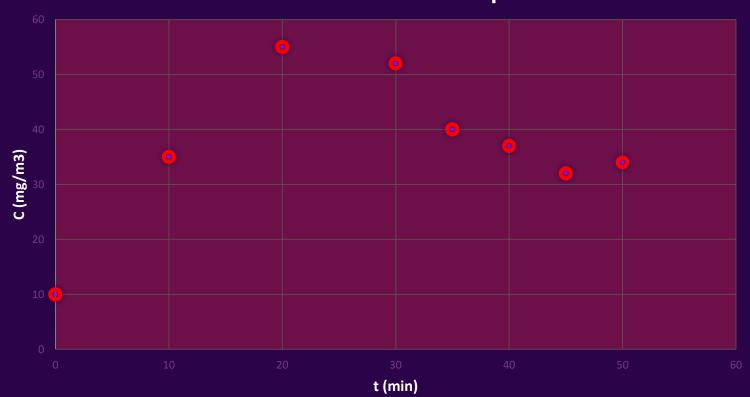


• *Q* es constante

$$\mathbf{M} = Q \int_{t_i}^{t_f} C. dt$$

• Datos No equiespaciados

¿Cuál es el mejor método que podemos usar?



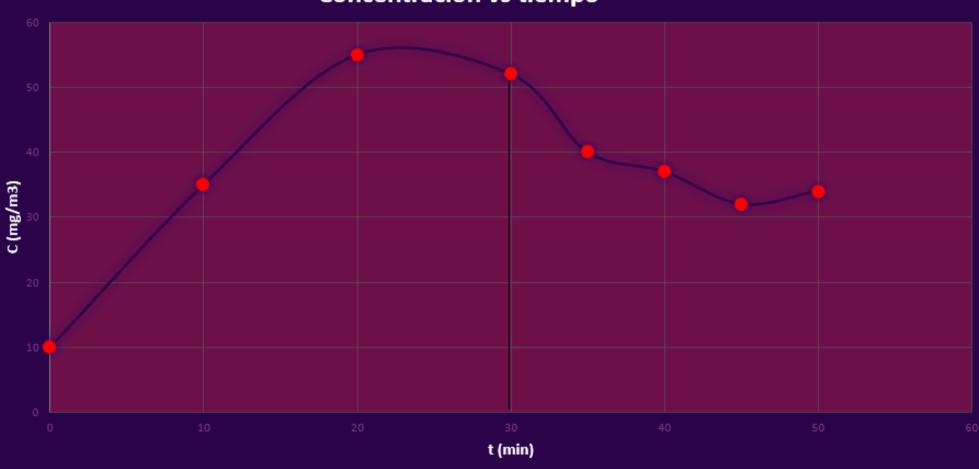
• *Q* es constante

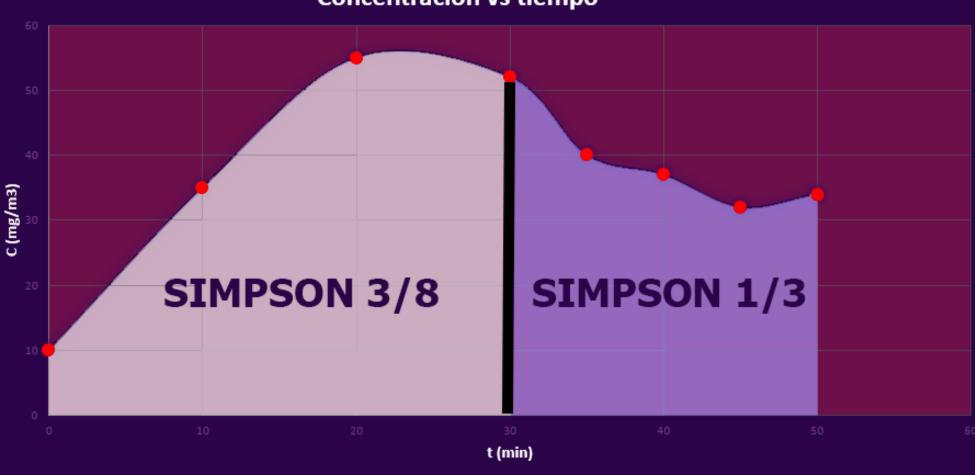
$$\mathbf{M} = Q \int_{t_i}^{t_f} C. dt$$

• Datos No equiespaciados

Combinar
SIMPSON 1/3
y SIMPSON 3/8

Concentración vs tiempo





ESTRATEGIA DE RESOLUCION

• Aplicar $Simpson\ 3/8\ Simple$ usando los primeros cuatro puntos de la tabla $\to I_1$

• Aplicar Simpson 1/3 Múltiple para los puntos restantes $\rightarrow I_2$

- Sumar Los resultados Obtenidos $I = I_1 + I_2$
- Multiplicar el Resultado de la Integral por Q, para obtener M

$$M = Q.I$$

ALGORITMO

#DATOS DE ENTRADA:

```
Q = 4 #Caudal
leer t1
leer t4
leer C1
leer C2
leer C3
leer C4
```

#CALCULO DE I1:

$$I_1 = (t_4 - t_1) \frac{(1.C_1 + 3.C_2 + 3.C_3 + 1.C_4)}{8}$$

leer t8 leer C5 leer C6 leer C7 leer C8 #CALCULO DE 12

$$I_2 = (t_8 - t_4) \frac{(1.C_4 + 4.C_5 + 2.C_6 + 4.C_7 + 1.C_8)}{12}$$

#CALCULO DE LA INTEGRAL Y M

$$I = I_1 + I_2$$

$$M = Q.I$$

#DATOS DE SALIDA:

Mostrar M

CALCULOS

$$I_1 = (t_4 - t_1) \frac{(1.C_1 + 3.C_2 + 3.C_3 + 1.C_4)}{8} = (30 - 0) \frac{(1.10 + 3.35 + 3.55 + 1.52)}{8}$$

$$I_1 = 1245$$

$$I_2 = (t_8 - t_4) \frac{(1.C_4 + 4.C_5 + 2.C_6 + 4.C_7 + 1.C_8)}{12} = (50 - 30) \frac{(1.52 + 4.40 + 2.37 + 4.32 + 1.34)}{12}$$

$$I_2 = 746,666666...$$

$$I = I_1 + I_2 = 1991,66666 \dots$$

$$M = Q.I = 7966,6666...$$

RESULTADOS

 $M = 7966, 6666 \dots$

¿Tiene sentido este resultado en el contexto de la problemática? ¿Cuántas cifras significativas uso?

Resolución de una Balanza de precisión: 0,1 mg

M = 7966, 6 mg

ANALISIS DEL ERROR

• Error estimado en la regla de Simpson 1/3 de aplicación múltiple

$$E_a = -\frac{(b-a)^5}{180.\,n^4} \overline{f}^4$$

• Error estimado en la regla de Simpson 3/8 simple

$$E_a = -\frac{(b-a)^5}{6480} \bar{f}^4$$

 f^4 ? \Longrightarrow No tenemos la expresión analítica de la función integrada.

APROXIMACION DE LA DERIVADA CON DIFERENCIAS DIVIDIDAS FINITAS

ANALISIS DEL ERROR

Diferencias divididas finitas hacia adelante

Cuarta derivada

$$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4}$$

$$f''''(x_i) = \frac{-2f(x_{i+5}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4}$$

$$O(h^2)$$

Diferencias divididas finitas hacia atras Cuarta derivada

$$f''''(x_i) = \frac{f(x_i) - 4f(x_{i-1}) + 6f(x_{i-2}) - 4f(x_{i-3}) + f(x_{i-4})}{h^4}$$

$$f''''(x_i) = \frac{3f(x_i) - 14f(x_{i-1}) + 26f(x_{i-2}) - 24f(x_{i-3}) + 11f(x_{i-4}) - 2f(x_{i-5})}{h^4}$$

$$O(h)$$

Diferencias divididas finitas centradas Cuarta derivada

$$f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4}$$

$$f''''(x_i) = \frac{-f(x_{i+3}) + 12f(x_{i+2}) + 39f(x_{i+1}) + 56f(x_i) - 39f(x_{i-1}) + 12f(x_{i-2}) + f(x_{i-3})}{6h^4}$$

$$O(h^2)$$

MUCHAS GRACIAS

